Journal of Ayurveda & Holistic Medicine

https://jahm.co.in eISSN-2321-1563

Telomerase Activators from the lens of Ayurveda: A review

1*Sonam Chawla

ABSTRACT:

Background: Increasing population of elderly across the globe has recognised the need for science-backed interventions and regimens to aid healthy ageing. Ayurveda has recognised dhatu kshaya (reduction or depletion of bodily tissues) as a key component contributing to jara (geriatric disposition) due to decline in composition and functioning of tissues and organs. Ayurveda-backed telomere activators are a promising strategy to identify molecules/rasayanas ("path to radiance" or the science of rejuvenation and longevity) that can preserve the telomeric ends and hence prevent activation of senescence, genome instability etc, correlating positively with higher rates of ageing. Methodology: A systematic search of "telomerase activator", "Ayurveda" with Boolean operator AND was performed in PubMed and Google Scholar, for the duration of 2015-2025. Free full text articles, in English language were retrieved and manually inspected for 1st report of telomerase activator action. Results: The present review narrates the state-of-the-art herba/rasyanas/bioactive compounds that have demonstrated telomerase activator action in vitro/in vivo/clinically. Namely - Phyllanthus emblica (Amlaki rasayna), Withania somnifera (Ashwagandha), Centella asiatica (Mandukaparni), Astragalus membranaceus, Punica granatum, and Spirulina platensis have been reviewed as telomere activators. Centella asiatica (Mandukaparni) emerged as the most investigated and utilized for commercial purpose, followed by Astragalus membranaceus. Conclusion: The review bridges the ancient science of Ayurveda with modern day telomere biology to put forth innovative anti-ageing solutions. Ayurveda-backed formulations/molecules that can activate telomerase can be potentially avert dhatu kshaya and improve the human health span.

KEYWORDS: Ayurveda, healthy ageing, telomere attrition, telomerase activators, Dhatu kshaya RECEIVED ON:

30-05-2025

REVISED ON:

21-06-2025

ACCEPTED ON: 30-06-2025

Access This Article Online:

Quick Response Code:

Website Link:

https://jahm.co.in

DOI Link:

https://doi.org/10.70066/jah

m.v13i6.1898

Corresponding Author Email:

contact.schawla@gmail.com

CITE THIS ARTICLE AS

Sonam Chawla. Telomerase activators from the lens of Ayurveda: A review. *J of Ayurveda and Hol Med (JAHM)*. 2025;13(6):105-117

1. INTRODUCTION:

WHO has recognized the year 2021-2030 as the "Decade of Healthy Ageing" and through this global initiative they intend to facilitate a healthy, active and a full life for the elderly population across the globe. [1] The number of people aged more than 60 years in age will increase from 1.1 billion to 1.4 billion by 2030, that is approximately 1 in 6 people will be more than 60 years old. [2] With increase in chronological age, comes physiological decline and age-related diseases such as cardiovascular complications, metabolic syndrome and obesity, sarcopenia, neurodegeneration and Alzheimer's or Parkinson's disease etc. [3] Hence, management of ageing and age-related diseases will be a key agenda across global health agencies.

Understanding the molecular and cellular changes associated with ageing are elementary to management of ageing and its ensuing pathologies. In his landmark paper published in 2013, López-Otín and co-workers

first described the hallmarks or identifiers of ageing at the cellular or organismal level. The paper described nine hallmarks, namely - telomere attrition or shortening, genomic instability, epigenetic alterations, loss of proteostasis, compromised nutrient sensing, mitochondrial dysfunction, onset of senescence, stem cell exhaustion and alterations in the intercellular communication and signaling Ayurveda, one of the oldest systems of traditional medicine dating back up to 500 BC, recognizes iara (ageing) as the "act of being worn out". [4, 5] The "Swabhavoparamavada" (natural destruction) theory described by the ancient sage Charaka states every living individual moves towards cessation or decay, following its own inherent nature, the "Swabhava" (intrinsic quality or disposition). [6] The modern scientists have in fact recognised the interrelated nature of the modern ageing hallmarks and the ancient Ayurvedic parallels, and have been described in Table 1. [7]

Table 1: The Modern-day Hallmarks of ageing and Ayurvedic parallels

Hallmark of Ageing	Proposed Ayurvedic Parallel	Elaboration
Genomic instability	<i>Beeja dushti</i> (defects in	Deterioration at the fundamental cellular level as Beeja (seed)
	fundamental tissue/seed)	corruption.
Telomere attrition	Dhatu kshaya (tissue depletion)	The gradual shortening of telomeres parallels Dhatu kshaya,
		where tissue nourishment and integrity decline, especially with
		vata (wind, air or motion) aggravation in old age.
Epigenetic	Agni mandya (weak	Epigenetic changes are akin to impaired Agni (digestive fire)
alterations	digestive/metabolic fire)	governing metabolism and production of energy from
		nutrients.
Loss of proteostasis	Imbalance in <i>Ojas</i> and <i>Srotas</i>	Proteostasis failure corresponds to the loss of Ojas (vital
	(channels)	essence) and impaired Srotas (channels), which affects cellular
		function and immunity.
Deregulated nutrient	Prakriti and Satmya	Ayurveda emphasis on <i>dincharya</i> (daily routine) and
sensing	(constitution and adaptability)	personalized diet and lifestyle changes, highlighting the key

		role of nutrient sensing pathways.		
Mitochondrial	Agni and Prana (digestive fire	Mitochondrial dysfunction is equated to weakened Agni and		
dysfunction	and life force)	Prana energy, leading to fatigue and low energy production.		
Cellular senescence	Vata vriddhi and Dhatu kshaya	Accumulation of senescent cells relates to aggravated <i>Vata</i> and tissue depletion, contributing to decreased cellular regeneration and increased ageing signs.		
Stem cell exhaustion	Reduced <i>Ojas</i> and impaired <i>Dhatu</i> formation	Stem cell declines parallels diminished <i>Ojas</i> and impaired tissue regeneration capacity		
Altered intercellular communication	Manas (mind) and Prana (life energy) imbalance	Disrupted cellular signaling can be viewed as disturbances in Manas and Prana.		

The Geroscience Hypothesis proposes that decreasing the rate of aging process will delay the onset of pathological changes associated with aging. This decrease in the rate of aging can be an outcome of dietary changes, active lifestyle, uptake of bioactives/pharmacological entities etc. [8] One of the most science backed opportunities to promote healthy ageing is addressing the progressive shortening of telomeres. Telomeres are nucleoprotein ends of chromosomes, and have been observed to be replicated incompletely with each cell cycle leading to shortening generation after generation. Telomerase is the ribonucleoprotein complex responsible for synthesizing telomeric ends of chromosomes during cell cycle, and its activity is minimally present in somatic cells and additionally it declines progressively. [9] Although, in *Ayurveda*, a direct mention of "telomere shortening" is not conspicuous, the concept of "*Dhatu Kshaya*" or in modern day terminology - tissue depletion and predominance of *Vata* (one of the three *doshas* linked to imbalance in air and space) in elderly, resonates with the idea of progressive cellular ageing and functional decline. [10] The present narrative mini review, presents the state-of-the-art literature on the phenomena of telomere shortening, the mechanisms responsible for its onset, and the potential *Ayurvedic*/herbal interventions or regimes that can aid maintenance of telomeres, via telomerase activation in elderly populations to aid healthy ageing.

Table 2: Search strategy outline

Database	Keywords used	Boolean Operator	Filters	Notes
PubMed (via	telomerase	AND	English,	Review articles were not considered
MEDLINE),	activator,		free-full	Manual curation of retrieved papers 100 papers was
Google Scholar	Ayurveda,		text	performed to include only those research articles that
	natural		research	reported an <i>Ayurvedic</i> formulation/herbal
			articles,	extract/nutraceutical formulation/bioactive compound
			2015-2025	exhibiting telomerase activation potential for the 1^{st} time.

2. METHODOLOGY

A systematic search was performed in PubMed (via MEDLINE) and Google scholar using above keywords, Boolean operators, and filters described in table 2. A total of 11 free full text articles were included after manual curation for the first report of *Ayurvedic* formulation/herbal extract/nutraceutical formulation/bioactive compound exhibiting telomerase activation.

Telomeres: the caps of longevity

Muller coined the term telomere from Greek words telos (end) and meros (part) in 1938. As correctly described, the telomeres are essentially composed of repetitive DNA sequences, up to several kilobases in tandem repeats and at the 3' end there exists a single stranded 100-300 polynucleotide sequence overhanging (rich in GC content). This overhang folds back on itself to form the T-lariat (loop like) structure. The nucleic acid core at telomeres is complexed with six proteins forming the "Sheltrin complex". [11] Besides being a standalone hallmark of ageing, telomere shortening is closely interlinked with other age-related cellular disturbances, either as a cause or outcome. Namely, telomere shortening can trigger cellular senescence the irreversible blockade of cell cycle and initiation of senescent associated secretory phenotype, contributing gravely to inflammaging. Exposure to extrinsic (UV radiation, chemicals) or intrinsic (redox imbalance) stressors activating the DNA damage response can lead to genome instability and epigenetic disturbances and are also linked to telomere attrition. [12]

The telomere shortening phenomena was described rightly under the "End Replication Theory" put forth by Olovnikov and James Watson in 1970s. [13, 14] They

recognised that DNA polymerase requires an RNA primer to initiate replication. The lagging strand replicates via short segments caused the Okazaki fragments, and at the end of the lagging strand template, there's no space for the final primer to be placed. Hence, this leads to a small gap that goes unreplicated, cell cycle after cell cycle. Thus, the telomere shortens and can no longer protect the chromosome ends. [15] Direct evidence exist in support of telomere shortening correlating directly with decrease in replicative lifespan in isolated mammalian cells (faster attainment of Hayflick's limit in vitro), model organisms routinely used for ageing studies and in clinical investigations. [16] Hence strategies to preservation of telomere length are pivotal to exploring natural/synthetic interventions to aid healthy ageing.

Telomerase: structure and function

The telomerase is essentially composed of two subunits - the telomerase RNA and the catalytic subunit telomerase reverse transcriptase protein (TERT, abbreviated as hTERT for human TERT). The catalytic subunit is primarily responsible for synthesis of tandem repeats on the telomeric ends. As shown in Figure 1, the hTERT is composed of four domains. The N-terminal domain also called as TEN (telomerase essential Nterminal), the telomerase RNA binding domain (TRBD), the reverse transcriptase domain (RT), and the Cterminal domain (C-TD, also called as the "thumb" domain. [17] The TEN domain binds the single stranded DNA and the telomerase RNA and enhances the processivity (the ability to catalyze concurrent reactions without releasing the substrate) of the complex, the TBRD is responsible for recognition of the RNA

template. The RT domain has a "palm" and "finger" subdomains, and three aspartic acids (negatively charged amino acids) in tandem at the active site. The RT domain is responsible for synthesizing the tandemly repetitive DNA at the telomeres on the RNA template, and maintaining the length of telomeres. Grossly, the somatic tissues are deficient/have low levels of telomerase activity and hence with progressive proliferation telomeres shorten as chronological age advances. Of adult cell types - stem cells, germ cells, and activated lymphocytes contain active and significant hTERT activity. [18] Hence the potential for telomerase activation by herbal supplementation/ayurvedic regimes is of high clinical value, considering the high patient compliance for safer and natural treatments/prophylactic interventions.

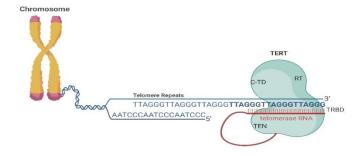


Figure 1: TERT structure and action. The relative positioning of the functional domains in 3D structure of TERT is depicted. The TEN domain located near the N terminal binds the ssDNA and the telomerase RNA template. Adjacent is the TRBD domain which recognizes the RNA template, and followed by the RT domain (catalytic domain) responsible for synthesis of telomeric DNA repeats of 5'TTAGGG3' on a template of telomeric RNA. The C-TD, also called the thumb domain is adjacent to RT domain and stabilizes RT-DNA

interaction. The telomeric repeats are located at the end of the chromosomes (red ends of chromosomes).

Telomerase activators from Ayurveda

Ayurveda defines Sapta Dhatus (seven fundamental tissues of the body) as follows: : rasa (plasma/lymph fluid), rakta (blood), mamsa (muscles), meda (fat), asthi (bone), majja (bone marrow), sukhra (reporductive fluid) . [18] The authors hypothesize here that as telomeres shorten with chronological ageing, the cellular composition of the sapt dhatus declines in number and functionality (either via arrest of cell cycle and acquiring a senescence-associated secretory phenotype, or cell death). Reactivation of telomerase in the somatic tissues using herbal/ayurvedic treatment regimens can facilitate delaying the rate of cellular ageing and eventually enhance the healthspan of the subject

Key Findings from Literature Review: A staggering observation during the literature review was the limited availability of research on natural or ayurvedic telomerase activators, especially in light of the vast body of cumulative literature on telomere biology. This could be a consequence of the complex dynamics of telomere biology. Understanding modulation of telomere length and telomerase activity, as well as their quantification are intricate and pose experimental challenges. Additionally, raised telomerase enzymatic with activity positively correlates malignancy progression and aggressiveness, hence researchers need to cautiously design their studies, wherein detection of activation of cancer signaling pathways is a key component while evaluating pharmacological efficacy and safety of telomerase activators. Further, modern

medicine works principally on a reductionist approach of how a drug molecule interacts with a specific drug target, against the more holistic and individualized approach of <u>ayurveda</u>. This gap needs to be bridged by defining standardized protocols for evaluation of efficacy and safety of herbs and <u>rasayanas</u>, especially clinicals trials on telomerase activating ayurvedic formulations/natural molecules. A large proportion of studies are *in vitro* or *in vivo* (animal models). Hereafter we elaborate the <u>ayurvedic</u> formulations/herbs/natural molecules that have been documented in literature to be of "telomerase activators" (Figure 2).

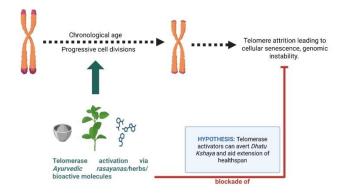


Figure 2: Mechanistic insight into role of telomerase activators from *Ayurvedic rasayanas*/herbs/bioactive molecules. As the age progresses, the telomeric ends are shortened with every cell cycle in the somatic tissues which are deficient in telomerase activity. *Ayurvedic rasayanas*/herbs/bioactive molecules that can activate telomerase enzyme activity (green arrow), and blockade of telomere attrition, and hence genome instability and cellular senescence. Hence the authors hypothesize that telomerase activators can avert *dhatu kshaya* and extend healthspan.

Amlaki rasayan

Amalaki Rasayana is prepared from the fruit of Phyllanthus emblica. The fruits of amla, as it is known in the Indian subcontinent are a rich source of vitamin C and a diverse array of bio-actives such as ellagic acid, quercetin, tannins, alkaloids, flavonoids etc. In the study by Guruprasad and co-workers healthy aged subjects (45–60 years of age), and young subjects (age control) were selected for the study, and underwent koshta shuddhi (stomach cleansing) for 1 week. The individuals were divided into amalaki rasayana administered or placebo group, 7th day onwards, for 45 days at a dose of forty-five grams per day. This treatment regimen exhibited increased telomerase activity in isolated peripheral blood mononuclear cells, in aged individual against the placebo group by 90th day. The same was reflected in aged individuals with normal as well as overweight basal metabolic rate, amlaki rasyana administration raised the telomerase activity temporally from the baseline. Additionally, the complete blood cell counts between experimental group and placebo group showed no significant deviation, endorsing the safety of the rasayana. This is in line with the role of amalaki rasayana being defined as a vayasthapana rasayana (rasayana for longevity and deflecting the geriatric disposition). [19]

Ashwagandha

Ashwagandha or Withania somnifera root extract is a well-recognized stress management herb in modern medicine as well as traditional systems across the globe. The root extract is rich in "withanolides", used as adaptogens and enhancing stress tolerance in young and elderly subjects. The study reported by Raguraman

and co-workers investigated the efficacy of *Ashwagandha* root extract (10µg/ml - 5mg/ml) treatment for a period of 72 h in enhancing the telomerase activity. The study reports a dose-dependent increase in telomerase activity up to 50 µg /ml, after which due to the extract suspension directly in media interfered with cellular viability. *Ashwagandha* by means of its telomerase activating potential is thus endorsed for aiding enhancement of health span in human subjects. [20]

Mandukaparni

Mandukparni or Centenella asiatica is prescribed for skin diseases. depression and anxiety, immunomodulation, venous efficiency, gastric ulcers etc traditional medicine. Mandukparni formulation (08AGTLF) enriched in triterpenes (purchased commercially) was evaluated for activation of telomerase activity in comparison with herbal preparations from Astragalus membranaceus extract and individual bioactives oleanolic acid, maslinic acid and multi-nutrient preparations. The model system used was human peripheral blood mononuclear cells isolated from healthy subjects, treated with the interventional preparations in dose response curves (0.02, 0.2, 2 µg/ml). 24-72h post-treatment the mandukparni extract (08AGTLF) exhibited nearly 8-fold boost in telomerase activity, in comparison to untreated cells. [21] Additionally, Karsono and co-workers reported a novel extract named - DLBS1649 derived from mandukparni, that when evaluated in 3T3-L1 (adipose tissue) and HEK293 (human embryonic kidney cells) exhibited maintenance of telomere length in HEK293, with a of congruent preservation telomerase expression/activity and markers of cell cycle progress in the cell line. Further, in the differentiated 3T3-L1 cells simulating adipose tissue, the DLBS1649 extract mimicked calorie restriction and lower fat droplets as compared to resveratrol. The extract was then evaluated in lifespan extension studies in fruit flies (Drosophila) and significant increase in mean survival time was observed in male (>20%) and female flies (>10%). [22] The mandukparni extract was also reported as a component of a poly-herbal Thai formulation (Mylife/Mylife100®) administered subjects aged 50-65 years for 8 weeks. The leukocyte telomeric length was significantly raised from baseline in the treatment group in comparison to placebo group, along with raised plasma total antioxidant capacity levels. Although, the other components of the polyherbal formulation can also be underpinned for telomerase activation, but action of mandukparni cannot be negated. [23] Similarly, a nutraceutical formulation of mandukparni with vitamin C, zinc and vitamin D3 when administered in 18-month-old rats as compared to 3-month-old rats reigned the rate of telomere attrition, and even exhibited increased telomere length on being treated with higher doses. In addition, the telomerase activity was significantly raised in the peripheral blood mononuclear cells isolated from the treated rats vs untreated rats. [24]

Astragalus membranaceus

Astragalus membranaceus, is a prominent medicinal herb in traditional Chinese medicine, with significant anti-ageing property that slows down the rate of ageing. In 2011, Bernardes and co-workers reported a small molecule isolated from root of *A. membranaceus* to

lengthen the telomeric ends and depreciate the number of short telomeres as well as cognate DNA damage in mouse embryonic fibroblasts genetically engineered to contain only a single copy of the telomerase. [25] Other novel telomerase activator molecules reported from the root extract are derivatives of cycloastragenol, cyclocanthogenol, etc and astragaloside IV, evaluated in various cell lines, as well as disease models to confer anti-ageing and relieving pathological changes via telomerase activation. [26, 27]

Punica granatum L

Punica granatum or pomegranate is a fruit recognized in ayurveda to be rich in vitamins, polyphenols, flavanoids, and tannins, its peels containing maximum antioxidant activity. A recent study wherein pomegranate peels were administered to aged rats for two months in comparison to positive control rats administered TA-65.

Significantly raised telomerase activity, accompanied with raised markers of antioxidant defense (thioredoxin) was observed in rats treated with pomegranate peel extract. [28]

Spirulina platensis

Spirulina, an edible, filamentous bacterium is a globally recognized nutritional supplement. Sapogenins extracted from Spirulina were evaluated in MCF7 and HDF cell lines for impact on telomerase activity. The methanolic extract, although raised the telomerase activity but was highly toxic to MCF7 cells. Instead, the aqueous extract enriched in sapogenins raised the telomerase activity in HDF cells (normal, non-cancerous cells) and inhibited the telomerase activity in MCF7 cells (breast cancer cells). Hence, careful evaluation across cell types should be performed for ascertaining telomerase activator/inhibitor action. [29]

Table 3: Summary of some medicinal herbs/rasayana as a telomerase activators

Ayurvedic formulation/ herb/	Type of study	Dosage and duration	Effects on telomerase	Ref.
bioactive molecule			activity/expression and allied	
			markers	
Amalaki Rasayana	Clinical	45 days at a dose of	Increased telomerase activity and	[19]
		45g/day	telomere length	
Ashwagandha or Withania	<i>in vitro</i> (He La	50 μg /ml for 72h	Increase telomerase activity	[20]
somnifera root extract	cells)			
Mandukparni or Centenella	<i>in vitro</i> (human	0.02μg/ml for 24-72h	Increase telomerase activity	[21]
asiatica – extract 08AGTLF	peripheral blood			
	mononuclear cells			
	isolated)			
Mandukparni extract -	in vitro - 3T3-L1	in vitro - 3T3-L1 (50,	Increased telomerase expression,	[22]
DLBS1649	HEK293 and in	and 100 μg/mL for 14	telomere length (HEK293),	
	vivo -Drosophila	days), HEK293 (25 and	decreased fat droplets (3T3-L1),	

		50μg/ml till passage	increased mean survival time	
		no. 43)	(Drosophila)	
		in vivo -Drosophila		
		(2mg/ml for 80 days)		
Mandukparni extract as a part	Clinical (isolated	80 days (the	Increased telomere length,	[23]
of poly-herbal Thai formulation	leukocytes)	formulation contained	plasma antioxidants	
(Mylife/Mylife100®)		150 mg <i>mandukparni</i>		
		leaf powder)		
<i>Mandukparni</i> extract in	in vivo (18 months	2 capsules/kg bw/day	Increased telomerase activity,	[24]
nutraceutical formulation with	old rats)	for 3 months (each	increased telomere length	
vitamins and minerals		capsule had 9 mg		
		mandukparni extract)		
Proprietary extract (TA-65) of	in vitro :	<i>in vitro</i> : 10 μM every	Increased telomerase reverse	[25]
dried root of Astragalus	Haploinsufficient	24–48 h	transcriptase expression in cells	
membranaceus	(<i>Terc</i> ^{+/−}) mouse	in vivo: 25 mg/kg body	and associated cell cycle markers	
	embryonic	weight per day for 4	(in vitro), increased healthspan	
	fibroblasts,	months.	(improved glucose tolerance,	
	in vivo: 2-year-old		osteoporosis status and skin	
	C57BL / 6JolaHsd		health, telomerase reverse	
	mice		transcriptase expression,	
			decreased cancer incidence.	
Astragaloside IV,	<i>in vitro</i> : High	1, 3, 5 mM) for 24 h	Increased telomerase reverse	[26]
Cycloastragenol from	glucose stress		transcriptase mRNA and protein	
Astragalus membranaceus	given to nucleus		expression, telomere length,	
	pulposus cells		lower senescence and apoptosis	
	isolated from tail		markers.	
	intervertebral			
	discs of Sprague-			
	Dawley rats			
Biotransformed	in vitro	10, 30, and 100 nM	Increased expression of	[27]
cyclocephagenol and its 12-			telomerase reverse transcriptase	
hydroxy derivatives			and telomerase activity	

using Camarosporium				
laburnicola				
Punica granatum peels' extract	in vivo (10 months	250 mg/kg for 2	Increased expression of	[28]
	old Wistar rats)	months	telomerase reverse transcriptase	
			and other anti-oxidant defense	
			markers, normalised liver	
			histopathology	
Aqueous extract of sapogenins	in vitro (MCF7	0.004 mg/ml of	Decreased telomerase activity in	[29]
from Spirulina	cells, HDF cells)	sapogenin extract for	MCF7 cells, and increased	
		24h	telomerase activity in HDF cells	

3. DISCUSSION

Extension of human health span has been a common goal of modern and traditional medicine practices. Today, when the global elderly population is on the brink of crossing 1.4 billion, management of human health span by bridging traditional medicine practices such as Ayurveda and even traditional Chinese medicine in synchrony with state-of-the-art understanding of modern-day molecular medicine and pharmacology can offer innovative and efficacious solutions. [1, 2] Telomere attrition, leading to cellular senescence and genomic instability, is a recognised hallmark of ageing that can be closely interlinked to dhatu kshaya. [4, 5, 7, 8] Activation of telomerase reverse transcriptase enzyme or up-regulating its' expression can hence possibly offset dhatu kshaya and improve the health span. The present systematic review endorses our hypothesis, wherein evidence-based perspectives on Ayurvedic formulations/rasayanas/herbs/bioactive molecules of natural origin that have demonstrated activation of telomerase activity and congruent preservation of health span. The most widely used herb

for telomerase activation, also described in Ayurveda, is mandukparni. The leaf extracts have been used per se as well as in combination in nutraceutical formulations with other herbs and vitamins/minerals and have demonstrated positive correlation with telomerase activity and telomeric length preservation. In addition, health span and lifespan extension benefits were also observed across model organisms investigated - cell lines, Drosophila, and human subjects. [21-24] In terms of usage, manudukparni is followed by a herb from traditional Chinese medicine **Astragalus** membranaceus. The herb's root extract is in fact available as commercially, by the trade name of TA-65, and has been demonstrated health span extension without increasing the incidence of cancer in animal studies. [25-27] Converse to the telomerase activation as an anti-ageing strategy, telomerase inhibition is an anti-cancer strategy. Thus, it is critical to evaluate cancer incidence in all interventional studies where telomerase activation is sought. Here the author also recommends that as A. membranaceus belongs to the Fabaceae family, Ayurvedic counterpart herbs in the same family

explored for potential telomerase can be activators.Interestingly, the same extract can demonstrate opposing action, as shown in sapogenins rich extract prepared from Spirulina. The extract increased telomerase activity in normal human dermal fibroblast cells, but inhibited the telomerase activity in cancerous MCF7 cells. Hence careful choice of cell line for assessment of telomerase activator vs inhibitor is critical. [29]

Other, Ayurvedic herbs/rasayanas that have demonstrated promising telomerase activation and health span extension efficacy are amlaki rasayana, ashwagandha and peel extract of Punica gratum. [19, 20, 28] Except amlaki rasyana, ashwagandha, and peel extract of Punica gratum have only been assessed for telomerase activation in pre-clinical models and warrant standardization of the extracts investigated and then only can they proceed to clinical evaluation.

CONCLUSION

The Ayurvedic herbs, formulations and bioactives as potential telomerase activators is an emerging avenue for promoting healthspan and lifespan. The present review narrates the growing evidence from recent studies on Phyllanthus emblica (Amlaki rasayna), Withania somnifera (Ashwagandha), Centella asiatica (Mandukaparni), Astragalus membranaceus, Punica granatum, and Spirulina platensis exhibiting measurable increase in activating telomerase, thereby supporting cellular viability and vitality. These findings bridge the ancient wisdom of Ayurveda with contemporary geroscience, highlighting the interplay between dhatu kshaya (tissue depletion) and telomere biology.

Authors Details:

^{1*}Assistant Professor, Department of Biotechnology, Jaypee Institute of Information Technology, NOIDA (Main campus), Sector 62, Uttar Pradesh, INDIA-201309

Acknowledgments:

Author acknowledges JIIT, NOIDA (Main Campus) for the infrastructure support provided.

Conflict Of Interest – The authors declare no conflicts of interest.

Source of Support – The authors declare no source of support.

Additional Information:

Authors can order reprints (print copies) of their articles by visiting: https://www.akinik.com/products/2281/journal-of-ayurveda-and-holistic-medicine-jahm

Publisher's Note:

Atreya Ayurveda Publications remains neutral with regard to jurisdictional claims in published maps, institutional affiliations, and territorial designations. The publisher does not take any position concerning legal status of countries, territories, or borders shown on maps or mentioned in institutional affiliations.

References:

- Decade of healthy ageing [Internet]. Who.int. [cited 2025 Jun 6]. Available from: https://www.who.int/publications/b/56512
- Ageing and health [Internet]. Who.int. [cited 2025 Jun 6].
 Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
- Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther [Internet]. 2022;7(1):391. Available from: http://dx.doi.org/10.1038/s41392-022-01251-0
- López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell [Internet]. 2013;153(6):1194–217.
 Available from: http://dx.doi.org/10.1016/j.cell.2013.05.039
- López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell [Internet].
 2023;186(2):243–78. Available from: http://dx.doi.org/10.1016/j.cell.2022.11.001
- Datta HS, Mitra SK, Paramesh R, Patwardhan B. Theories and management of aging: modern and ayurveda perspectives. Evid Based Complement Alternat Med [Internet].

- 2011;2011(1):528527. Available from: http://dx.doi.org/10.1093/ecam/nep005
- Singhal DA, Gupta DK. Process of Ageing An Ayurvedic Perspective. J Ayurveda Integr Med Sci (JAIMS) [Internet].
 2016;1(01):78–82. Available from: http://dx.doi.org/10.21760/jaims.v1i1.3641
- Austad SN. The geroscience hypothesis: Is it possible to change the rate of aging? In: Advances in Geroscience. Cham: Springer International Publishing; 2016. p. 1–36.
- Vaiserman A, Krasnienkov D. Telomere length as a marker of biological age: State-of-the-art, open issues, and future perspectives. Front Genet [Internet]. 2020;11:630186. Available from: http://dx.doi.org/10.3389/fgene.2020.630186
- Devi D, Srivastava R, Dwivedi BK. A critical review of concept of aging in Ayurveda. Ayu [Internet]. 2010;31(4):516–9. Available from: http://dx.doi.org/10.4103/0974-8520.82030
- Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell [Internet].
 2021;184(2):306–22. Available from: http://dx.doi.org/10.1016/j.cell.2020.12.028
- Li S, Liu Z, Zhang J, Li L. Links between telomere dysfunction and hallmarks of aging. Mutat Res Genet Toxicol Environ Mutagen [Internet]. 2023;888(503617):503617. Available from: http://dx.doi.org/10.1016/j.mrgentox.2023.503617
- Watson JD. Origin of concatemeric T7 DNA. Nat New Biol [Internet]. 1972;239(94):197–201. Available from: http://dx.doi.org/10.1038/newbio239197a0
- 14. Olovnikov AM. A theory of marginotomy. J Theor Biol [Internet]. 1973;41(1):181–90. Available from: http://dx.doi.org/10.1016/0022-5193(73)90198-7
- Wang X, Deng H, Lin J, Zhang K, Ni J, Li L, et al. Distinct roles of telomerase activity in age-related chronic diseases: An update literature review. Biomed Pharmacother [Internet].
 2023;167(115553):115553. Available from: http://dx.doi.org/10.1016/j.biopha.2023.115553
- Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress.
 Proc Natl Acad Sci U S A [Internet]. 2004;101(49):17312–5.
 Available from: http://dx.doi.org/10.1073/pnas.0407162101

- Wyatt HDM, West SC, Beattie TL. InTERTpreting telomerase structure and function. Nucleic Acids Res [Internet].
 2010;38(17):5609–22. Available from: http://dx.doi.org/10.1093/nar/gkq370
- Amitray.com. [cited 2025 Jun 6]. Available from: https://amitray.com/telomere-protection-and-ayurvedic-rasayana/
- Guruprasad KP, Dash S, Shivakumar MB, Shetty PR, Raghu KS, Shamprasad BR, et al. Influence of Amalaki Rasayana on telomerase activity and telomere length in human blood mononuclear cells. J Ayurveda Integr Med [Internet]. 2017;8(2):105–12. Available from: http://dx.doi.org/10.1016/j.jaim.2017.01.007
- Raguraman, Vasantharaja & Subramaniam, Jamuna. (2016).
 Withania somnifera Root Extract Enhances Telomerase Activity in the Human HeLa Cell Line. Advances in Bioscience and Biotechnology. 07. 10.4236/abb.2016.74018.
- 21. Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Thanasoula M, et al. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol Med Rep [Internet]. 2019;20(4):3701–8. Available from: http://dx.doi.org/10.3892/mmr.2019.10614
- Karsono AH, Tandrasasmita OM, Berlian G, Tjandrawinata RR.
 Potential antiaging effects of DLBS1649, a Centella asiatica bioactive extract. J Exp Pharmacol [Internet]. 2021;13:781–95.
 Available from: http://dx.doi.org/10.2147/JEP.S299547
- Praengam K, Tuntipopipat S, Muangnoi C, Jangwangkorn C, Piamkulvanich O. Efficacy of a dietary supplement derived from five edible plants on telomere length in Thai adults: A randomized, double-blind, placebo-controlled trial. Food Sci Nutr [Internet]. 2024;12(3):1592–604. Available from: http://dx.doi.org/10.1002/fsn3.3851
- Tsatsakis A, Renieri E, Tsoukalas D, Buga AM, Sarandi E, Vakonaki E, et al. A novel nutraceutical formulation increases telomere length and activates telomerase activity in middle aged rats. Mol Med Rep [Internet]. 2023;28(6). Available from: http://dx.doi.org/10.3892/mmr.2023.13119
- 25. Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without

- increasing cancer incidence: TA-65 elongates short telomeres and increases health span of adult/old mice. Aging Cell [Internet]. 2011;10(4):604–21. Available from: http://dx.doi.org/10.1111/j.1474-9726.2011.00700.x
- 26. Hong H, Xiao J, Guo Q, Du J, Jiang Z, Lu S, et al. Cycloastragenol and Astragaloside IV activate telomerase and protect nucleus pulposus cells against high glucose-induced senescence and apoptosis. Exp Ther Med [Internet]. 2021;22(5):1326. Available from: http://dx.doi.org/10.3892/etm.2021.10761
- 27. Küçüksolak M, Yılmaz S, Ballar-Kırmızıbayrak P, Bedir E. Potent telomerase activators from a novel sapogenin via biotransformation utilizing Camarosporium laburnicola, an

- endophytic fungus. Microb Cell Fact [Internet]. 2023;22(1):66. Available from: http://dx.doi.org/10.1186/s12934-023-02069-3
- 28. Alshinnawy AS, El-Sayed WM, Sayed AA, Salem AM, Taha AM. Telomerase activator-65 and pomegranate peel improved the health status of the liver in aged rats; multi-targets involved. Iran J Basic Med Sci [Internet]. 2021;24(6):842–50. Available from: http://dx.doi.org/10.22038/ijbms.2021.56670.12655
- Akbarizare M, Ofoghi H, Hadizadeh M. Dual effect of Sapogenins extracted from Spirulina platensis on telomerase activity in two different cell lines. Mol Biol Res Commun [Internet]. 2021;10(1):1–4. Available from: http://dx.doi.org/10.22099/mbrc.2020.38230.1537